A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose.

نویسندگان

  • Vladimir V Zverlov
  • Galina A Velikodvorskaya
  • Wolfgang H Schwarz
چکیده

The sequence of the celO gene from Clostridium thermocellum F7 was determined. The gene product, cellulase CelO (Ct-Cel5F), had a modular structure consisting of a carbohydrate-binding module of the CBM3 family and a catalytic domain of the glycosyl hydrolase family 5. The presence of the dockerin module indicated that the enzyme was a component of the cellulosome complex. The thermostable recombinant gene product was active on cellodextrins, barley beta-glucan, carboxymethylcellulose and insoluble cellulose. Cellobiose was the only product released from amorphic and crystalline cellulose, cellotetraose and higher cello-oligosaccharides, identifying CelO as a cellobiohydrolase. The cleavage pattern of p-nitrophenyl beta-D-cellotetraoside, blockage of the hydrolysis of NaBH(4)-reduced cellopentaose and the reduction in substrate viscosity suggested activity from the reducing end in a processive mode after making random cuts. Binding to insoluble, i.e. amorphous, and crystalline cellulose was mediated by the carbohydrate-binding module CBM3b, with a preference for the crystalline substrate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis

BACKGROUND Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and othe...

متن کامل

Structure and function of the Clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex.

The efficient deconstruction of lignocellulosic biomass remains a significant barrier to the commercialization of biofuels. Whereas most commercial plant cell-wall-degrading enzyme preparations used today are derived from fungi, the cellulosomal enzyme system from Clostridium thermocellum is an equally effective catalyst, yet of considerably different structure. A key difference between fungal ...

متن کامل

Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA.

The nucleotide sequence of the Clostridium thermocellum F7 cbhA gene, coding for the cellobiohydrolase CbhA, has been determined. An open reading frame encoding a protein of 1,230 amino acids was identified. Removal of a putative signal peptide yields a mature protein of 1,203 amino acids with a molecular weight of 135,139. Sequence analysis of CbhA reveals a multidomain structure of unusual co...

متن کامل

The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons

BACKGROUND Clostridium thermocellum is a thermophilic anaerobic bacterium that degrades cellulose by using a highly effective cellulosome, a macromolecular complex consisting of multiple cellulose degrading enzymes organized and attached to the cell surface by non-catalytic scaffoldins. However, due largely to lack of efficient methods for genetic manipulation of C. thermocellum, it is still un...

متن کامل

Comparative characterization of all cellulosomal cellulases from Clostridium thermocellum reveals high diversity in endoglucanase product formation essential for complex activity

BACKGROUND Clostridium thermocellum is a paradigm for efficient cellulose degradation and a promising organism for the production of second generation biofuels. It owes its high degradation rate on cellulosic substrates to the presence of supra-molecular cellulase complexes, cellulosomes, which comprise over 70 different single enzymes assembled on protein-backbone molecules of the scaffold pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 148 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002